metabelian, supersoluble, monomial
Aliases: C12.39S32, (C3×Dic6)⋊7S3, C12⋊S3⋊10S3, C33⋊8D4⋊7C2, Dic6⋊3(C3⋊S3), (C3×C12).142D6, C33⋊14(C4○D4), C3⋊3(D12⋊S3), (C3×Dic3).14D6, C3⋊2(C12.26D6), C32⋊6(Q8⋊3S3), (C32×Dic6)⋊11C2, (C32×C6).42C23, C32⋊20(D4⋊2S3), (C32×C12).44C22, C33⋊5C4.14C22, (C32×Dic3).14C22, C6.52(C2×S32), C4.20(S3×C3⋊S3), C12.23(C2×C3⋊S3), (Dic3×C3⋊S3)⋊3C2, (C2×C3⋊S3).34D6, (C3×C12⋊S3)⋊8C2, C6.5(C22×C3⋊S3), (C4×C33⋊C2)⋊2C2, Dic3.2(C2×C3⋊S3), (C6×C3⋊S3).26C22, (C3×C6).100(C22×S3), (C2×C33⋊C2).12C22, C2.9(C2×S3×C3⋊S3), SmallGroup(432,664)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12.39S32
G = < a,b,c,d,e | a3=b12=d3=e2=1, c2=b6, ab=ba, ac=ca, ad=da, eae=a-1, cbc-1=b-1, bd=db, ebe=b7, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1824 in 304 conjugacy classes, 68 normal (20 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C2×C4, D4, Q8, C32, C32, C32, Dic3, Dic3, C12, C12, C12, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C2×C3⋊S3, D4⋊2S3, Q8⋊3S3, C3×C3⋊S3, C33⋊C2, C32×C6, S3×Dic3, C3⋊D12, C3×Dic6, C3×D12, C4×C3⋊S3, C12⋊S3, C12⋊S3, Q8×C32, C32×Dic3, C33⋊5C4, C32×C12, C6×C3⋊S3, C2×C33⋊C2, D12⋊S3, C12.26D6, Dic3×C3⋊S3, C33⋊8D4, C32×Dic6, C3×C12⋊S3, C4×C33⋊C2, C12.39S32
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, S32, C2×C3⋊S3, D4⋊2S3, Q8⋊3S3, C2×S32, C22×C3⋊S3, S3×C3⋊S3, D12⋊S3, C12.26D6, C2×S3×C3⋊S3, C12.39S32
(1 30 40)(2 31 41)(3 32 42)(4 33 43)(5 34 44)(6 35 45)(7 36 46)(8 25 47)(9 26 48)(10 27 37)(11 28 38)(12 29 39)(13 66 54)(14 67 55)(15 68 56)(16 69 57)(17 70 58)(18 71 59)(19 72 60)(20 61 49)(21 62 50)(22 63 51)(23 64 52)(24 65 53)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 23 7 17)(2 22 8 16)(3 21 9 15)(4 20 10 14)(5 19 11 13)(6 18 12 24)(25 69 31 63)(26 68 32 62)(27 67 33 61)(28 66 34 72)(29 65 35 71)(30 64 36 70)(37 55 43 49)(38 54 44 60)(39 53 45 59)(40 52 46 58)(41 51 47 57)(42 50 48 56)
(1 48 34)(2 37 35)(3 38 36)(4 39 25)(5 40 26)(6 41 27)(7 42 28)(8 43 29)(9 44 30)(10 45 31)(11 46 32)(12 47 33)(13 58 62)(14 59 63)(15 60 64)(16 49 65)(17 50 66)(18 51 67)(19 52 68)(20 53 69)(21 54 70)(22 55 71)(23 56 72)(24 57 61)
(1 14)(2 21)(3 16)(4 23)(5 18)(6 13)(7 20)(8 15)(9 22)(10 17)(11 24)(12 19)(25 56)(26 51)(27 58)(28 53)(29 60)(30 55)(31 50)(32 57)(33 52)(34 59)(35 54)(36 49)(37 70)(38 65)(39 72)(40 67)(41 62)(42 69)(43 64)(44 71)(45 66)(46 61)(47 68)(48 63)
G:=sub<Sym(72)| (1,30,40)(2,31,41)(3,32,42)(4,33,43)(5,34,44)(6,35,45)(7,36,46)(8,25,47)(9,26,48)(10,27,37)(11,28,38)(12,29,39)(13,66,54)(14,67,55)(15,68,56)(16,69,57)(17,70,58)(18,71,59)(19,72,60)(20,61,49)(21,62,50)(22,63,51)(23,64,52)(24,65,53), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,23,7,17)(2,22,8,16)(3,21,9,15)(4,20,10,14)(5,19,11,13)(6,18,12,24)(25,69,31,63)(26,68,32,62)(27,67,33,61)(28,66,34,72)(29,65,35,71)(30,64,36,70)(37,55,43,49)(38,54,44,60)(39,53,45,59)(40,52,46,58)(41,51,47,57)(42,50,48,56), (1,48,34)(2,37,35)(3,38,36)(4,39,25)(5,40,26)(6,41,27)(7,42,28)(8,43,29)(9,44,30)(10,45,31)(11,46,32)(12,47,33)(13,58,62)(14,59,63)(15,60,64)(16,49,65)(17,50,66)(18,51,67)(19,52,68)(20,53,69)(21,54,70)(22,55,71)(23,56,72)(24,57,61), (1,14)(2,21)(3,16)(4,23)(5,18)(6,13)(7,20)(8,15)(9,22)(10,17)(11,24)(12,19)(25,56)(26,51)(27,58)(28,53)(29,60)(30,55)(31,50)(32,57)(33,52)(34,59)(35,54)(36,49)(37,70)(38,65)(39,72)(40,67)(41,62)(42,69)(43,64)(44,71)(45,66)(46,61)(47,68)(48,63)>;
G:=Group( (1,30,40)(2,31,41)(3,32,42)(4,33,43)(5,34,44)(6,35,45)(7,36,46)(8,25,47)(9,26,48)(10,27,37)(11,28,38)(12,29,39)(13,66,54)(14,67,55)(15,68,56)(16,69,57)(17,70,58)(18,71,59)(19,72,60)(20,61,49)(21,62,50)(22,63,51)(23,64,52)(24,65,53), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,23,7,17)(2,22,8,16)(3,21,9,15)(4,20,10,14)(5,19,11,13)(6,18,12,24)(25,69,31,63)(26,68,32,62)(27,67,33,61)(28,66,34,72)(29,65,35,71)(30,64,36,70)(37,55,43,49)(38,54,44,60)(39,53,45,59)(40,52,46,58)(41,51,47,57)(42,50,48,56), (1,48,34)(2,37,35)(3,38,36)(4,39,25)(5,40,26)(6,41,27)(7,42,28)(8,43,29)(9,44,30)(10,45,31)(11,46,32)(12,47,33)(13,58,62)(14,59,63)(15,60,64)(16,49,65)(17,50,66)(18,51,67)(19,52,68)(20,53,69)(21,54,70)(22,55,71)(23,56,72)(24,57,61), (1,14)(2,21)(3,16)(4,23)(5,18)(6,13)(7,20)(8,15)(9,22)(10,17)(11,24)(12,19)(25,56)(26,51)(27,58)(28,53)(29,60)(30,55)(31,50)(32,57)(33,52)(34,59)(35,54)(36,49)(37,70)(38,65)(39,72)(40,67)(41,62)(42,69)(43,64)(44,71)(45,66)(46,61)(47,68)(48,63) );
G=PermutationGroup([[(1,30,40),(2,31,41),(3,32,42),(4,33,43),(5,34,44),(6,35,45),(7,36,46),(8,25,47),(9,26,48),(10,27,37),(11,28,38),(12,29,39),(13,66,54),(14,67,55),(15,68,56),(16,69,57),(17,70,58),(18,71,59),(19,72,60),(20,61,49),(21,62,50),(22,63,51),(23,64,52),(24,65,53)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,23,7,17),(2,22,8,16),(3,21,9,15),(4,20,10,14),(5,19,11,13),(6,18,12,24),(25,69,31,63),(26,68,32,62),(27,67,33,61),(28,66,34,72),(29,65,35,71),(30,64,36,70),(37,55,43,49),(38,54,44,60),(39,53,45,59),(40,52,46,58),(41,51,47,57),(42,50,48,56)], [(1,48,34),(2,37,35),(3,38,36),(4,39,25),(5,40,26),(6,41,27),(7,42,28),(8,43,29),(9,44,30),(10,45,31),(11,46,32),(12,47,33),(13,58,62),(14,59,63),(15,60,64),(16,49,65),(17,50,66),(18,51,67),(19,52,68),(20,53,69),(21,54,70),(22,55,71),(23,56,72),(24,57,61)], [(1,14),(2,21),(3,16),(4,23),(5,18),(6,13),(7,20),(8,15),(9,22),(10,17),(11,24),(12,19),(25,56),(26,51),(27,58),(28,53),(29,60),(30,55),(31,50),(32,57),(33,52),(34,59),(35,54),(36,49),(37,70),(38,65),(39,72),(40,67),(41,62),(42,69),(43,64),(44,71),(45,66),(46,61),(47,68),(48,63)]])
51 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4A | 4B | 4C | 4D | 4E | 6A | ··· | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12M | 12N | ··· | 12U |
order | 1 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 18 | 18 | 54 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | 6 | 6 | 27 | 27 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 36 | 36 | 4 | ··· | 4 | 12 | ··· | 12 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D6 | D6 | D6 | C4○D4 | S32 | D4⋊2S3 | Q8⋊3S3 | C2×S32 | D12⋊S3 |
kernel | C12.39S32 | Dic3×C3⋊S3 | C33⋊8D4 | C32×Dic6 | C3×C12⋊S3 | C4×C33⋊C2 | C3×Dic6 | C12⋊S3 | C3×Dic3 | C3×C12 | C2×C3⋊S3 | C33 | C12 | C32 | C32 | C6 | C3 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 1 | 8 | 5 | 2 | 2 | 4 | 1 | 4 | 4 | 8 |
Matrix representation of C12.39S32 ►in GL8(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;
C12.39S32 in GAP, Magma, Sage, TeX
C_{12}._{39}S_3^2
% in TeX
G:=Group("C12.39S3^2");
// GroupNames label
G:=SmallGroup(432,664);
// by ID
G=gap.SmallGroup(432,664);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,254,135,58,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^12=d^3=e^2=1,c^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,c*b*c^-1=b^-1,b*d=d*b,e*b*e=b^7,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations